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Abstract—Astrocytes are the largest glial population in the

mammalian brain. Astrocytes in the cerebral cortex are

reportedly generated from four sources, namely radial glia,

progenitors in the subventricular zone (SVZ progenitors),

locally proliferating glia, and NG2 glia; it remains an open

question, however, as to what extent these four cell types

contribute to the substantial increase in astrocytes that

occurs postnatally in the cerebral cortex. Here we summa-

rize all possible sources of astrocytes and discuss their

roles in this postnatal increase. In particular, we focus on

astrocytes derived from local proliferation within the cortex.

This article is part of a Special Issue entitled: Astrocyte-

Neuron Interact. Published by Elsevier Ltd. on behalf of

IBRO.
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NUMBER OF GLIA IN THE CEREBRAL CORTEX

There is no significant difference in neuronal number

between neonates and adults in the rodent cortex, but

most glia in the rodent cortex are produced early in the

postnatal period (Bandeira et al., 2009). At birth, non-

neuronal cells (most of which are glia) in the rat brain

comprise �6% of brain cells; in adult rats, however, they

account for nearly 50% of brain cells. Glial number in the

cortex increases sixfold to eightfold from four to six million

during postnatal (P) days 1–6 to 35 million at P21 and

remains stable throughout adulthood (Bandeira et al.,

2009). Glial number in the brain of other mammals, such

as cats, undergoes a similar postnatal increase (Brizzee

and Jacobs, 1959). From P60 in cat (juvenile period) to

adulthood, glial number in the cerebral cortex increases

and is accompanied by a huge change in the glia-to-

neuron ratio; this ratio is �0.83 at P60 and reaches 1.42

in adulthood, and then it increases slightly to 1.48 in late

adulthood. In addition, the density of glia in the juvenile

cat cortex increases by 60% upon reaching adulthood,

and then it increases slightly thereafter (Brizzee and

Jacobs, 1959). Astrocytes are the largest glial population

in the mammalian brain, and most astrocytes are pro-

duced postnatally (Sauvageot and Stiles, 2002;

Freeman, 2010). Researchers have identified multiple

sources of astrocyte production in the cerebral cortex,

including radial glia, subventricular zone (SVZ) progeni-

tors, NG2 glia, and locally proliferating glia (see Table 1).

However, the contribution of each of these sources differs

among developmental stages. Below, we address recent

evidence pertaining to this developmental change.

RADIAL GLIA–DERIVED ASTROCYTES AND
THEIR CONTRIBUTION

Radial glia were originally discovered by Camillo Golgi in

1885 (Rakic, 2003). They have radially oriented long pro-

cesses spanning the entire cortical wall in the human fetal

cortex and spinal cord (Rakic, 1972; Choi and Lapham,

1978). Based on their morphology illustrated with Golgi

impregnation, Cajal posited that radial glia likely transform

into astrocytes in the cortex (Cajal, 1911). In the early

embryonic stage of rhesus monkey, transitional radial glia

detach from the ventricle surface with a long process ter-

minating at blood vessels during the first half of gestation

(Schmechel and Rakic, 1979; Levitt and Rakic, 1980).

They become astrocytes with subsequent loss of radial

orientation and extension of multiple stellate processes
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Table 1. Sources of astrocytes in the cerebral cortex

Sources Methods Species References

Radial glia Golgi staining Monkey Schmechel and Rakic (1979)

Labeling with DiI Ferret Voigt (1989)

Labeling with dyes (DiI/DiA) Human (fetus) deAzevedo et al. (2003)

Organotypic slice cultures and time-lapse imaging Rat Noctor et al. (2004)

Organotypic slice cultures and time-lapse imaging Mouse Burns et al. (2009)

Genetic tracing Mouse Magavi et al. (2012)

Adenovirus-Cre infection Mouse Tsai et al. (2012)

SVZ progenitors Radioautography Mouse Smart (1961)

Radioautography Rat Lewis (1968)

Radioautography Rat Paterson et al. (1973)

Radioautography Mouse Paterson (1983)

Retroviral labeling Rat Levison et al. (1993)

Retroviral labeling Rat Levison and Goldman (1993)

Retroviral labeling Mouse Marshall and Goldman (2002)

NG2 glia Genetic tracing Mouse Zhu et al. (2008)

Genetic tracing Mouse Guo et al. (2009)

Locally proliferating glia Radioautography Rat Kaplan and Hinds (1980)

Retroviral labeling Rat Price and Thurlow (1988)

Retroviral labeling Rat Levison and Goldman (1993)

Organotypic slice culture and time-lapse imaging Mouse Burns et al. (2009)

In vivo imaging, retroviral labeling, and genetic tracing Mouse Ge et al. (2012)

Genetic tracing Mouse Magavi et al. (2012)
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(Schmechel and Rakic, 1979). Similar observations were

reported in the ferret brain (Voigt, 1989). Radial glia can

be labeled via injection of tracers into the pial surface

where radial glia endfeet are numerous. The tracers

spread from the endfeet to the entire cell body of radial

glia, so it is possible for researchers to follow the radial

glia lineage (Voigt, 1989). In newborn ferrets, most

tracer-labeled radial glia were found to become astrocytes

in postnatal week 3 (Voigt, 1989). These results were

confirmed by labeling translocating radial glia via DiI injec-

tion under the pial surface in the brain of human fetuses

(deAzevedo et al., 2003) or by labeling foci of radial glia

via adenovirus-Cre infection in the mouse cortex (Tsai

et al., 2012). However, direct live imaging results to

demonstrate that radial glia transform into astrocytes

were obtained using cultured rat brain slices (Noctor

et al., 2004). After 114 h of time-lapse imaging with confo-

cal microscopy, the clonal progeny of labeled radial glia

were traced after they were infected with GFP-

expressing viruses. Individual radial glia began to trans-

form into astrocytes after they completed neurogenesis

in late embryonic stages (Noctor et al., 2004). Radial glia

translocated from the ventricular zone (VZ) to the interme-

diate zone and became immature astrocytes by retracting

their long leading processes (Noctor et al., 2004). The

transformed cells were characterized based on their

astrocytic electrophysiological properties (Noctor et al.,

2004). Given that astrocytes undergo a dramatic change

in morphology during culture, it will be necessary to vali-

date these results using in vivo imaging.

How do astrocytes derived from radial glia contribute

to the entire mature astrocyte population in the cerebral

cortex? After neurogenesis is completed in the

mammalian brain, individual radial glia transform into

individual astrocytes (Schmechel and Rakic, 1979;
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However, because the astrocyte population of an adult

brain is much larger than the radial glial population in a

developing brain, the contribution of radial glia–derived

astrocytes is believed to be small. Recent results suggest

that a single radial glia might yield multiple astrocytes in

the cerebral cortex. This is supported by genetic fate

mapping with a Thy1.2-Cre mouse line (Magavi et al.,

2012). Crossing this line with a reporter line resulted in

a low rate of recombination. This enabled the analysis

of a single column of clustered cells within the mouse cor-

tex that were produced from an individual radial glia or

neural progenitor. The cells in this single column included

neurons and astrocytes at a relative ratio ranging from 1:6

to 1:8 (Magavi et al., 2012). In such columns, �70% of

neurons were projection neurons (Jones, 1993;

Wonders and Anderson, 2005). According to the calcula-

tions of Magavi et al. (2012), most of the cortical astro-

cytes were originally derived from such developmental

columns. Interestingly, most labeled cortical columns con-

tained �3 multiple-astrocyte clusters (a group of GFP-

expressing astrocytes each within 25 lm of another

GFP-expressing astrocyte). The authors mentioned that

a single radial glia likely transforms into multiple astro-

cytes, but so far direct evidence is lacking. Each cluster

comprised 1–15 astrocytes (average, 3.6; Magavi et al.,

2012). The phenomenon of multiple astrocytes in a single

cluster strongly indicates active proliferation of astrocytes

within the cortex shortly after their transformation from

radial glia. This phenomenon is consistent with time-

lapse imaging results from brain slices and in vivo results

showing that astrocytes enter the cell cycle and proliferate

locally in cortical layers (Burns et al., 2009; Ge et al.,

2012). Based on the observations of Magavi et al., radial

glia contribute one of every 3.6 astrocytes (�30%)
trocytes in the cerebral cortex. Neuroscience (2015), http://dx.doi.org/
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Fig. 1. Four astrocyte sources in the postnatal cerebral cortex. There are four astrocyte sources in the cerebral cortex: radial glia, SVZ-derived

progenitors, locally proliferating glia, and NG2 glia. (a) Radial glia translocate from the VZ to the cortex and become immature astrocytes by

retracting their long leading processes. (b) Astrocytes derived from the SVZ migrate into the cerebral cortex likely along radial glial shafts. Most

radial glia in rodents start to disappear during late embryonic stages, and few remain after postnatal week 2. (c) NG2 glia produce a portion of

astrocytes in the ventral cortex of the forebrain. (d) Locally proliferating astrocytes in the cortex undergo symmetric division to generate additional

astrocytes. These locally produced astrocytes are a major astrocyte source in the postnatal cortex. Note: locally proliferating astrocytes are

originally produced from progenitors in the SVZ and radial glia.
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present in the mature cerebral cortex. It is also possible

that one radial glia transforms into one astrocyte progen-

itor (Noctor et al., 2004). These astrocyte progenitors are

migratory and retain the capacity to proliferate (Burns

et al., 2009; Ge et al., 2012), and consequently a single

radial glia–derived progenitor can produce clusters with

multiple astrocytes in the cortex (Fig. 1).
SVZ PROGENITOR–DERIVED ASTROCYTES
AND THEIR CONTRIBUTION TO THE TOTAL

ASTROCYTE POPULATION

Abundant evidence has shown that SVZ progenitors

produce both astrocytes and oligodendrocytes in the

postnatal rodent cerebral cortex (Smart, 1961; Lewis,

1968; Privat and Leblond, 1972; Paterson et al., 1973;

Paterson, 1983; Levison and Goldman, 1993; Levison

et al., 1993; Marshall and Goldman, 2002; Burns et al.,

2009). Retroviral infection is frequently used to analyze

the progeny of the labeled SVZ progenitors in vivo.
Because only a small portion of SVZ-derived progenitors

are labeled with this method, however, direct evidence

demonstrating the contribution of SVZ-derived astrocytes

to the overall astrocyte population is still needed. The diffi-

culty of traditional methods, such as [3H]thymidine or BrdU

labeling, is that they cannot be used to distinguish the
Please cite this article in press as: Ge W-P, Jia J-M. Local production of as
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contribution of SVZ-derived astrocytes from that of radial

glia–derived astrocytes and locally produced astrocytes.

Astrocytes derived from the SVZ are believed to

migrate to the cerebral cortex along radial glial shafts,

as do projection neurons in embryos. In rodents, most

radial glia start to disappear beginning in the late

embryonic stages, and few remain after postnatal week

2. Shortly after birth, many axons pass through the

white matter in the rodent forebrain (Wang et al., 2007;

Zhou et al., 2013) and likely form a physical barrier to

astrocyte migration after disappearance of radial glia;

moreover, the number of SVZ progenitor–derived astro-

cytes that migrate into the cortex with assistance from

radial glia also decreases substantially (Burns et al.,

2009). Our group used electroporation to label both

SVZ-derived progenitors and VZ radial glia in P0–2 mice

and analyzed their progeny 1–2 weeks later. Approxi-

mately 25% of astrocytes derived from the VZ and SVZ

migrated into six cortical layers, and �75% remained in

the SVZ and white matter (Ge et al., 2012). After P14,

SVZ progenitor–derived astrocytes in rats do not colonize

the cerebral cortex (Levison et al., 1993). Because no

good method has been developed to efficiently label all

SVZ progenitors, we still do not know the percentage of

SVZ progenitor–derived astrocytes that contribute to the

entire astrocyte population in the postnatal cortex.
trocytes in the cerebral cortex. Neuroscience (2015), http://dx.doi.org/
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NG2 GLIA-DERIVED ASTROCYTES AND THEIR
CONTRIBUTION THE TOTAL ASTROCYTE

POPULATION

NG2 glia account for 5–8% of the glial population (Levine

et al., 2001) and form synapses with neurons (Bergles

et al., 2000; Lin and Bergles, 2004). These glia are the

major dividing cells in the nervous system outside of neu-

rogenic regions in the adult rodent brain (Levine et al.,

1993; Horner et al., 2000; Dawson et al., 2003; Kukley

et al., 2008; Ge et al., 2009; Geha et al., 2010). After

pulse-chase with BrdU, 70–75% of BrdU+ cells in the

rat cerebral cortex were found to be NG2 glia (Dawson

et al., 2003). It is well established that NG2 glia have

the potential to produce both oligodendrocytes and astro-

cytes in vitro (Raff et al., 1983). Recently, NG2 glia were

found to produce astrocytes in the ventrolateral forebrain

of NG2CreBac;Z/EG mice, including the temporal cortex,

ventrolateral stratum, septum, hippocampus, and thala-

mus (Zhu et al., 2008). NG2 glia–derived astrocytes con-

tributed 18% and 36% of all astrocytes in the ventral

cortical regions of the anterior and posterior forebrain,

respectively; however, very few astrocytes were derived

from NG2 glia in the dorsal cortex (Zhu et al., 2008).

Moreover, because NG2 glia of these NG2CreBac;Z/EG
mice began producing astrocytes in the late embryonic

stage (Zhu et al., 2008), two independent groups did fate

mapping by crossing PdgfraCreER mice with different

reporter lines including Rosa26-YFP, Z/EG, and

ROSA26-mGFP. They administrated tamoxifen at P4,

P30, P45, and P180 and then analyzed the progeny after

days or months to analyze whether NG2 glia produced

astrocytes in the postnatal brain (Rivers et al., 2008;

Kang et al., 2010; Clarke et al., 2012). Interestingly, both

groups found that astrocytes were not produced from

NG2 glia in the cerebral cortex. However, another group

used Plp-Cre-ERT2;Rosa26-EYFP (Plp implies prote-

olipid) mice and obtained different results (Guo et al.,

2009). Plp promoter activity is restricted to the oligoden-

drocyte lineage (Doerflinger et al., 2003). When Guo

et al. administered mice with tamoxifen at P7 and carried

out immunochemistry at P15, they observed that astro-

cytes from NG2 glia were distributed in the ventral fore-

brain including the piriform cortex, amygdala, and

hypothalamus. Of the astrocytes in the ventral cortex,

15.9% were from NG2 glia in these mice (Guo et al.,

2009). Interestingly, no astrocytes were seen from NG2

glia in the dorsal cortex, which is consistent with the

results from NG2creBac;Z/EG (Zhu et al., 2008). In short,

the contribution of astrocytes derived from the oligoden-

droglial lineage to dorsal cortical astrocytes is zero and

to the ventral cortex is possibly small in the postnatal

rodent brain.

LOCAL PROLIFERATION OF GLIA IN THE
DEVELOPING CORTEX

Cell proliferation in the cortex has been reported for over

a century in different species including dogs, cats, rats,

and mice (Buchholtz, 1890; Sclavunos, 1899; Hamilton,

1901; Addison, 1911; Allen, 1912). The huge advance-

ments in the study of radial glia and SVZ progenitors have
Please cite this article in press as: Ge W-P, Jia J-M. Local production of as
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drawn much attention from researchers in the past three

decades, but the importance of local glial production has

been neglected. There are two peaks of local proliferation

of glia in the rat cerebral cortex after birth: the first is at

P3–7, and the second is at P16 (Allen, 1912; Ichikawa

et al., 1983). Dividing astrocytes mainly contribute to the

first peak (Ge et al., 2012), and dividing NG2 glia mainly

contribute to the second peak (Levison et al., 1993;

Zerlin et al., 1995; Parnavelas, 1999; Kukley et al.,

2008; Ge et al., 2009, 2012). The abundance of locally

proliferating glia varies in different layers. In P0 rat brain,

more dividing glia (�70%) are located within the inner lay-

ers of the cerebral cortex. However, this is reversed in the

P4 brain, in which �70% of all dividing cells from the cere-

bral cortex are located in the outer layers. At P6–P8, there

is no significant difference in the density of proliferating

cells between layers (Ichikawa et al., 1983). It remains

unknown why astrocyte proliferation peaks during postna-

tal week 1 but then ceases shortly after week 2 in the

rodent brain.

GLIA CONTINUE TO PROLIFERATE LOCALLY
IN ADULT MICE

Although cell proliferation outside the SVZ and VZ is quite

rare in the adult brain, cell division in glia occurs in nearly all

major rodent brain regions including the cerebral cortex,

corpus callosum, stratum, hypothalamus, and septum

(Messier et al., 1958; Walker and Leblond, 1958; Hain

et al., 1961; Smart and Leblond, 1961; Dalton et al.,

1968; Dawson et al., 2003). Themean percentage of divid-

ing cells at four ages (at age 23, 100, 200, and 400 days) in

mouse brain was determined to be: 0.142% in the septum,

0.445% in the corpus callosum, 0.048% in the corpus

stratum, 0.058% in the hypothalamus and 0.090% in the

cerebral cortex (Dalton et al., 1968).

Dividing astrocytes can be identified via electron

microscopy after [3H]thymidine labeling (Kaplan and

Hinds, 1980; Reyners et al., 1986). Thirty days after one

injection of [3H]thymidine, 0.077% of astrocytes in the

rat visual cortex underwent division and were labeled

(Kaplan and Hinds, 1980). With Ki67 staining in hGFAP-
GFP mouse cortical sections, our group observed that

0.30% of astrocytes were undergoing cell division at

P48–52 (Ge et al., 2012).

FREQUENCY OF LOCAL PROLIFERATION OF
GLIAL CELLS

Do astrocytes undergo cell division multiple times within

the first two postnatal weeks in rodents? Clusters with

large numbers of glia labeled with [3H]thymidine (with

subsequent visualization via autoradiography) could be

observed in the cerebral cortex of both young adult rat

and cat brains (Altman, 1963). Retrovirus-mediated gene

transfer is an ideal tool for lineage tracing because

replication-incompetent retroviruses can be used to intro-

duce new genes (e.g., lacZ or EGFP) into the genome of

dividing cells (Turner and Cepko, 1987). The progeny of

infected mother cells retains these marker genes. Ventric-

ular cells were labeled via retroviruses at E16 and clonal

analysis carried out at P14; clones with 2–3 closely
trocytes in the cerebral cortex. Neuroscience (2015), http://dx.doi.org/
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packed glia were observed within the rat cortex, and these

clones were produced by local glial proliferation after they

migrated into the cortex (Price and Thurlow, 1988). A sim-

ilar phenomenon was also reported in glial clusters by

labeling SVZ cells with two retroviruses at extremely low

multiplicity of infection that expressed two different mark-

ers to ensure that each cluster of cells was derived from

an individual cell after its progeny migrated into the rat

cerebral cortex (Levison and Goldman, 1993). The study

yielded very interesting results from one of the Thy1.2-Cre
mouse lines in that there was a low rate of recombination

after the line was crossed with a reporter line (Magavi

et al., 2012). In the progeny, Magavi et al. found that an

individual column of cells was produced from a single pro-

genitor or radial glia. Most labeled cortical columns con-

tained astrocyte clusters (a group of GFP + astrocytes

within 25 lm of another GFP+ astrocyte). Each cluster

contained an average of 3.6 astrocytes, indicating that

cortical astrocytes entered the cell cycle approximately

two times within the cortex. At 2–4 days after dividing,

astrocytes in the cerebral cortex can be labeled using

GFP-encoding retroviruses (Ge et al., 2012), and �10%

of the retrovirus-infected astrocytes (i.e., that had divided)

can be stained by an antibody against Ki67 (Ge et al.,

2012). These observations suggest that some astrocytes

enter the cell cycle again shortly after their initial division.

In glia, DNA synthesis during S-phase lasts �10 h

(Korr et al., 1973), and the subsequent G2 lasts 2–3 h

(Hommes and Leblond, 1967; Korr et al., 1973). Dividing

astrocytes complete mitosis (from metaphase to telo-

phase) in 2–3 h (Ge et al., 2012), and the time needed

for an astrocyte to complete one cell cycle is less than

24 h in the developing mouse brain (Burns et al., 2009).

Therefore, cortical astrocytes can potentially amplify their

number sixfold to eightfold via local proliferation within a

period of 1–2 weeks. Whether all astrocytes in the cere-

bral cortex—or only a small percentage—have compara-

ble potential to frequently divide remains an open

question.
LOCALLY PRODUCED ASTROCYTES AND
THEIR CONTRIBUTION TO THE TOTAL

ASTROCYTE POPULATION

Although we have known about local glial proliferation in

the brain for a very long time, owing to the diversity of

astrocytes from different sources, it was not until

recently that we started to understand that the local

production of glia is a major source of astrocytes in the

cerebral cortex. The main challenge to studying

astrocyte generation in the cortex is the lack of specific

markers for labeling cortical astrocytes. To date, the

efficient way of identifying cortical astrocytes is to

fluorescently label them by expressing an exogenous

gene such as GFAP-GFP (Zhuo et al., 1997; Matthias

et al., 2003) or Aldh1L1-GFP (Heintz, 2001) under control

of the respective promoter. Alternatively, some research-

ers have used Aldh1l1-Cre and GFAP-CreER to label

astrocytes after a mouse line is crossed with an appropri-

ate reporter line (Gong et al., 2003; Casper et al., 2007;

Chow et al., 2008; Ge et al., 2012; Tien et al., 2012;
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Tsai et al., 2012). In such genetic labeling methods, the

astrocytes must be distinguished from other glia types

(especially NG2 glia) using another method such as elec-

trophysiology or immunostaining (Matthias et al., 2003;

Ge et al., 2012). To determine the contribution of astro-

cytes derived from local proliferation, we injected retro-

viruses having a high titer into the cerebral cortex of

P0–2 mice with subsequent comparison of the number

of virally infected astrocytes with the total number of

astrocytes within an infected region after 1 week post-

infection. We found that approximately half (46.8%) of

the astrocytes were locally produced (Ge et al., 2012).

Because the half-life of infectivity of the retrovirus we

used is nearly 8 h at 37 �C and retroviruses likely cannot

infect all dividing cells, the actual contribution of astro-

cytes from local production is likely >46.8%. These

results demonstrate that local production accounts for a

major portion of astrocytes in the postnatal cerebral cor-

tex (Fig. 1).

Although astrocyte generation has been studied for

more than a century, certain fundamental questions

remain unclear including the following: (1) What is the

molecular mechanism underlying the difference in

astrocyte sources from different brain regions and

different developmental stages? (2) What is the role of

neuronal activity in astrocyte production? (3) What

mechanisms underlie the interaction between astrocytes

and vascular cells and the formation of astrocytic

endfeet in the developing brain? New techniques and

approaches for glia-specific studies would greatly

enhance the ability of researchers to answer these

questions.
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