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Using arterial–venous analysis to characterize
cancer metabolic consumption in patients
Nanxiang Xiong 1,9,10✉, Xiaofei Gao2,9, Hongyang Zhao1, Feng Cai2, Fang-cheng Zhang1, Ye Yuan1,

Weichao Liu1, Fangping He 3, Lauren G. Zacharias2, Hong Lin1, Hieu S. Vu2, Chao Xing 4, Dong-Xiao Yao1,

Fei Chen2, Benyan Luo4, Wenzhi Sun5,6, Ralph J. DeBerardinis 2,7, Hao Xu1 & Woo-ping Ge 5,8,10✉

Understanding tumor metabolism holds the promise of new insights into cancer biology,

diagnosis and treatment. To assess human cancer metabolism, here we report a method to

collect intra-operative samples of blood from an artery directly upstream and a vein directly

downstream of a brain tumor, as well as samples from dorsal pedal veins of the same

patients. After performing targeted metabolomic analysis, we characterize the metabolites

consumed and produced by gliomas in vivo by comparing the arterial supply and venous

drainage. N-acetylornithine, D-glucose, putrescine, and L-acetylcarnitine are consumed in

relatively large amounts by gliomas. Conversely, L-glutamine, agmatine, and uridine

5-monophosphate are produced in relatively large amounts by gliomas. Further we verify that

D-2-hydroxyglutarate (D-2HG) is high in venous plasma from patients with isocitrate

dehydrogenases1 (IDH1) mutations. Through these paired comparisons, we can exclude the

interpatient variation that is present in plasma samples usually taken from the cubital vein.
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G liomas are the most common brain tumors in adults and
the most lethal solid cancer in children younger than 12
years old1,2. Malignant gliomas remain incurable and pre-

sent unique challenges for clinicians, radiologists, and translational
investigators aiming to improve both diagnosis and prognosis3.
Targeting tumor metabolism has re-emerged over the last decade as
a potential source of new cancer therapies4. There are several means
by which human gliomas metabolism has been assessed: through
the metabolome of plasma collected from the cubital vein, through
metabolomics analysis of blood collected from resected cancer tis-
sue or cerebral spinal fluid, through imaging with nuclear magnetic
resonance (NMR), and through assessment of isotope enrichment
in glioma tissue after intraoperative infusion with 13C-labeled
nutrients5–10. To date, however, direct measurement of metabolites
consumption and production by gliomas in patients is technically
difficult. For example, NMR is limited to a relatively small number
of metabolites, e.g., choline, creatine, glutamate, N-acetyl-aspartate
(NAA), etc11.

In this study, we develop a method, named CARVE, paired
analysis of Cancer ARterial-VEnous metabolome, that is based on
the prediction that gliomas consume metabolites from the arterial
blood in appreciable quantities, and that these metabolites are
present at significantly lower concentrations in venous blood
downstream of the glioma. Conversely, metabolites produced and
secreted by gliomas accumulate in venous blood downstream of
the glioma relative to the arterial supply. Through the comparison
of plasma metabolomes between the arterial supply and venous
drainage, we exclude the interpatient variation and characterized
multiple metabolites that are consumed and produced by gliomas
in vivo from patients.

Results
Glioma blood sample collection and targeted metabolomic
measurement. To achieve this goal, we developed a method to
collect paired samples of blood upstream and downstream of
gliomas from patients (Fig. 1a, b). Shortly before glioma resection,
we took a small amount of blood (~1ml) from an artery and a vein
leading directly to and from a glioma, i.e., from arterial and venous
locations of glioma vasculature, respectively (Fig. 1c; see details in
Methods section). We also collected 1–2ml blood from the dorsal
pedal veins of these patients. We have successfully collected blood
samples from these three locations in 13 patients with astrocytoma,
oligodendroglioma, glioblastoma (GBM), or gliosarcoma (see Sup-
plementary Table 1). After extracting metabolites from the plasma,
we measured 204 metabolites with targeted metabolomic analysis in
a liquid chromatograph/triple quadrupole mass spectrometer. We
reliably obtained signals from 107 metabolites in each sample.

To identify metabolites consumed and produced by gliomas,
we performed arterial–venous comparison from upstream
and downstream of the glioma. Glioma arterial and venous
metabolite profiles from the same patient tended to cluster
together by the unsupervised principal component analysis
(PCA) (Fig. 2a, b), indicating that the differences in metabo-
lomes across patients are larger than those between arterial and
venous samples from same patient (Fig. 2a, b). Among all of
the metabolites that we detected, betaine aldehyde, asymmetric
dimethylarginine (ADMA), L-tyrosine, N-acetylornithine,
pyruvaldehyde, L-kynurenine, L-phenylalanine, D-glucose,
L-methylhistidine, N-alpha-acetyllysine, putrescine, L-acetylcar-
nitine, L-alanine, and glucosamine were consumed most by
gliomas (i.e., Variable Importance in Projection (VIP) score >1
by partial least squares discriminant analysis (PLS-DA) analysis
comparing venous and arterial groups). Inosine, hypoxanthine,
methionine sulfoxide, succinic acid, adenosine, L-glutamine,
choline, myoinositol, L-homoserine, uridine, acetylcholine,

uridine 5-monophosphate, glycerophosphocholine, gamma-
aminobutyric acid (GABA), agmatine, lactate, cytidine, taurine,
and xanthine were among the metabolites produced by gliomas
(Fig. 2c, d). L-Alanine displayed a relative depletion in the
venous samples from 13 patients (Fig. 2e) and glucose
concentration decreased in most of the samples (n= 9 of 13,
Fig. 2e). In short, we systemically identified multiple metabolites
that are either consumed or produced by gliomas in patients.

Paired comparison of plasma metabolome. To determine
whether these metabolites are consumed or produced by gliomas,
we compared the metabolome of plasma from a glioma artery
with that of plasma from the dorsal pedal vein. Because blood in
arteries does not pass through the capillary network, metabolite
concentrations in arteries (except for the pulmonary arteries)
are expected to be similar in different organs. By comparing the
metabolomes of dorsal pedal vein and glioma artery plasma,
we identified the metabolites consumed or produced by cells in
the foot. In this analysis, 20 metabolites including D-glucose and
glutamine were reduced in the dorsal pedal vein relative to the
artery supplying the glioma. Four of these metabolites, N-acet-
ylornithine, D-glucose, putrescine, and L-acetylcarnitine, were
also consumed by gliomas (Fig. 2c, d and Fig. 3a–d). L-glutamine,
agmatine, and uridine 5-monophosphate levels were higher in
plasma from the glioma vein than in plasma from the dorsal
pedal vein, indicating that these metabolites are likely consumed
by cells in the foot but produced by gliomas. These results
highlight differences in metabolite consumption and secretion
among different human organs. Some metabolites produced in
one organ (e.g., in the foot: putrescine, agmatine, uridine 5-
monophosphate, and xanthine) may feed glioma metabolism in
the brain. In nearly all patients, acetylcholine, allantoin, and
imidazoleacetic acid were enriched in plasma from the dorsal
pedal vein (Fig. 3e). ADP was reduced in plasma from the dorsal
pedal vein in all 13 patients, indicating that ADP was consumed
by cells in the foot. The metabolomes of the plasma of the dorsal
pedal vein and glioma vein could be separated into two groups
through PLS-DA analysis, confirming the distinct metabolic
profiles of the blood in these two vessels (Fig. 4a). Among these
metabolites, L-cystine, L-isoleucine, allantoin, urea, deoxyribose
1-phosphate, imidazoleacetic acid, methionine sulfoxide, adenine,
L-methionine, and L-asparagine were found at significantly
lower levels in plasma of glioma veins than dorsal pedal veins
(Fig. 4b, c). Comparing the metabolomes of plasma from glioma
venous samples with those from the dorsal pedal vein, levels of
L-glutamine, creatine, 5-aminolevulinic acid, D-glucosamine
6-phosphate, L-3-phenyllactic acid, ADP, riboflavin, agmatine,
cis-aconitic acid, adenosine monophosphate, inosinic acid, nia-
cinamide, xanthine, spermidine, cytidine monophosphate, uri-
dine 5-monophosphate, adenosine, S-adenosylmethionine, and
hypoxanthine, and inosine were all significantly higher in plasma
from glioma veins (Fig. 4b–e).

2-Hydroxyglutarate (2HG) concentration in glioma arterial
and venous plasma. We found that it was extremely difficult for
us to obtain “clean” signals of 2-hydroxyglutarate (2HG) from
our measurement with QTRAP because it was always fused with
the peak of another unknown metabolite in plasma. They had
very close retention times (Supplementary Fig. 1). We observed a
tendency that the 2HG concentrations in glioma venous samples
from patients with grade II and III gliomas (five of six patients,
oligodendroglioma and astrocytoma) were much higher than
those in other gliomas (e.g., GBM) after their values were nor-
malized to the samples from a peripheral vein in the same
patients (Fig. 5). To further confirm the results, we used 6550
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iFunnel Q-TOF LC/MS to measure 2HG from these samples. We
observed that 2HG signals in four of six patients with grade II and
III gliomas were significantly higher than those in other patients
(Supplementary Fig. 2).

Because we did not perform genomic sequencing of gliomas
from all of these patients to identify the mutations in these
gliomas, we did not know which patient(s) have IDH1/2
mutations. Somatic mutations in IDH1 were described in 12%
of glioblastomas12. IDH1/2 are commonly mutated genes in
grade II and grade III gliomas, with incidences of >75%13,14.
Fortunately, we had the staining results for some of these
patients after surgery (not all glioma samples from the hospital
were sent for staining with antibodies against P53, IDH1,
and ATRX). Gliomas from four patients had IDH1 mutations
(see Supplementary Table 1). All venous plasma samples from
patients with IDH1 mutations had high 2HG signal (Fig. 5c,
Supplementary Fig. 2).

We used a different method15 to measure D-2HG and L-2HG
in samples from these patients with IDH1 mutations (i.e., patients
No. 9–12, Supplementary Table 1). We observed that D-2HG was
significantly higher in venous samples compared to arterial
samples from the same patients (Fig. 5d). We also noted that the
D-2HG concentration in peripheral venous samples was very low

in all peripheral samples (peripheral plasma, 0.67 ± 0.19uM;
glioma arterial plasma 35.01 ± 10.31 uM; glioma venous plasma
48.95 ± 12.49 uM, n= 4 patients), which is comparable to that of
L-2HG concentration (0.35 ± 0.04 μM, n= 4 patients). Our
results demonstrate that a high amount of D-2HG was released
into the blood from gliomas with IDH1 mutations.

Based on the metabolites enriched in arterial plasma (i.e.,
consumed by gliomas) and enriched in venous plasma (i.e., they
are released from glioma). We did metabolite enrichment
analysis. We found that there is largest impact in Phenylalanine,
tyrosine and tryptophan metabolism in arterial plasma and
purine metabolism pathways in venous plasma (Supplementary
Figs. 3 and 4).

Discussion
The brain consists of multiple cell types that form a complex
neuron–glia blood vasculature network. During glioma develop-
ment, glioma cells infiltrate normal brain tissue and interact with
cells in this network16. The neighboring non-glioma cells form a
unique tumor microenvironment (TME), which is critical for
glioma progression16–18. It will be of interest to determine whether
glioma cells and neighboring non-glioma cells form a metabolic
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Fig. 1 The method of blood sample collection from patient glioma arteries and veins. a MR imaging of brain tumors in patients. The representative
images were collected from a patient with a 3.0 T scanner. T2-weighted/fluid attenuated inversion recovery (FLAIR) axial images and postcontrast
T1-weighted images were acquired to identify the location of the glioma. b, c Our strategy for collecting samples of blood from a glioma artery and vein for
paired comparison. Left panel, schematic showing the method of glioma blood collection; right panel, combined images showing the locations where blood
samples were collected from a patient’s glioma. The combined image was generated from two images taken at different time points.
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ecosystem to support each other. In our current study, we cannot
exclude the contribution of metabolites produced by non-glioma
cells. The extent of the contribution of these non-glioma cells to the
glioma metabolome that we measured from glioma plasma is

unknown and difficult to answer. Comparing the metabolomes of
arterial and venous plasma from the same patient is an efficient
method to exclude the large variations observed across patients
(Figs. 2a, e, 3a, e, 4a, e). Our strategy greatly increases the chance of
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identifying metabolites consumed or produced by gliomas, which
are impossible to detect in blood samples from the dorsal pedal vein
or cubital vein, where blood samples have traditionally been col-
lected for metabolomic analysis.

It has been reported that some metabolites are higher in the
cerebrospinal fluid of glioma patients than in control subjects,
including taurine, hypothanine, and L-glutamine5. Consistent
with these observations, we also detected that these metabolites,
relative to glioma arteries, are present at higher levels in plasma
collected from glioma veins. It is therefore likely that gliomas
produce these metabolites. Currently, increasing numbers of
metabolites have been identified using NMR for brain tumor
diagnosis, as these tests are inexpensive and can be done within a
short time19. Gliomas exhibit markedly different spectra from
those of neighboring normal brain tissue20,21. When the meta-
bolic ratios of choline (Cho), N-acetyl-aspartate (NAA) and
creatine are assessed in the spectra via chemical shift imaging22,23,
nearly all gliomas are found to have decreased NAA and
increased choline, thus producing an abnormally high Cho/NAA
ratio in glioma tissue. The decrease in NAA is widely interpreted
as a sign of neuronal loss or damage24,25, and increased choline is
often thought to represent the dramatic increase of membrane

synthesis in proliferating glioma cells26. Interestingly, we also
found that choline is produced by gliomas (low in glioma arterial
plasma but higher in glioma venous plasma).

We did not detect high D-2HG in peripheral venous plasma,
which is consistent with the results from a previous study of
D-2HG in peripheral venous samples27. However, although
significantly lower than those in venous samples, we surpris-
ingly detected that D-2HG levels were also high in glioma
arterial plasma compared to peripheral plasma. This is likely
because the glioma arterial vessel from which we collected
blood in the cerebral cortex was located right above the glioma
(due to ethical issues, this is a safe location that we were allowed
for blood collection). Some amount of D-2HG might pass
through the endothelial cells and enter the glioma arterial
vessel. The method that we developed here allows us to suc-
cessfully collect from an artery and vein specifically upstream
and downstream of a brain tumor in patients for the purpose of
performing metabolomic analysis to characterize the uptake
and consumption of metabolites from the tumor. Identification
of the metabolites consumed by gliomas in vivo is beneficial for
the understanding of glioma metabolism. Our results may also
provide clues for researchers to develop imaging biomarkers for
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distinguishing various glioma subtypes or evaluating the pro-
gression of gliomas.

We demonstrated the feasibility of metabolomic comparison of
arterial–venous samples from patients with brain tumors. It will
encourage the scientific community to use a similar strategy
to perform metabolomic analysis of other cancers in patients
or animal models. Identification of the metabolites or other
molecules consumed by gliomas in vivo is beneficial for the
understanding of glioma metabolism. However, more follow-up
experiments need to be performed in the future. In addition, the
metabolites from arterial and venous samples might not be
directly derived from cancer cells. They might be intermediate
metabolites from the tumor microenvironment. The metabolites
may be released from both cancer and noncancer cells. Also, we
cannot exclude the possibility that brain vascular cells located in
the arterial and venous segments contribute to the difference in
metabolite concentrations.

Methods
Patient selection. All patients were enrolled in the study approved by the Institu-
tional Review Board at Tongji Medical College, Huazhong University of Science and
Technology (IRB, 2017-S229). Informed consent was obtained from all patients. The
gender and age information of human subjects were included in the data tables for
plasma metabolomics. We ensured that data users or all people involved in this study
agree to protect participant confidentiality when handling data that contains poten-
tially identifying information from all patients. The patients (n= 27) included both
males and females with an age range of 21–61 years old. The average age was 46.8 ±
2.2 years old. Samples from 13 patients were recovered without hemolysis. All of these
13 patients were diagnosed with supratentorial glioma including five cases of astro-
cytoma, two cases of oligodendroglioma, five cases of glioblastoma, and one case of
gliosarcoma (see the detailed information on these 13 patients in Supplementary
Table 1). The procedure was tolerated in an additional 14 patients in whom excessive
hemolysis precluded metabolomics.

Immunohistochemistry analysis. We used tissue sections for routine histological
examination and for immunohistochemistry. These sections contained regions for
glioma diagnosis. Tumor tissues were fixed in formalin and then embedded in
paraffin. Sections were cut at 6 μm. Slides were then incubated with antibodies
against IDH1 R132H (1:300, clone H09, ZM0447, ZSGB-Bio), ATRX (1:200, ZA-
0016, polyclonal, ZSGB-Bio), and P53 (1:300, DO-7, mouse monoclonal, Roche)
for staining after surgery.

Blood collection from glioma blood vessels and peripheral vein. Patients were
typically in the supine position. After tracheal intubation, the patient’s head was
fixed to a May-field frame and tilted to the left or right, dependent on the location
of the tumor. A solution of 1% iodophor was applied to disinfect the incision. After
cutting the epidermis and drilling the skull, the skull was milled to create a bone
flap. The dura matter was cut with horseshoe scissors to reveal the glioma. The
texture and color of glioma tissue is obviously different from that of normal brain
tissue. Under the operating microscope, the arteries and veins of glioma tissue
could be clearly identified. During resection, both the arteries and veins of gliomas
need to be coagulated and cut. We collected 1 ml blood with a syringe (1 ml LS
25GA, 5/8 inch, BD) from an upstream glioma artery and downstream glioma vein
of each patient. Blood can be smoothly withdrawn from the arterial and venous
vessels of gliomas. We also collected 1–2 ml of peripheral limb venous blood from
the dorsal pedal vein. Thus, we obtained three blood samples from each patient.

Blood sample preparation after collection. Fasting blood samples (1 ml) were
collected as described above from patients before glioma resection surgery. These
samples were collected in tubes with anticoagulant heperin and stored on ice. They
were then shipped to a laboratory for centrifuging. Samples were immediately
placed on ice for 15 min. Then, the samples were centrifuged in the laboratory for
5 min (1000 × g, 4 °C). Samples were evaluated for hemolysis, and only samples
without hemolysis were analyzed. Each sample of nonhemolytic plasma was
divided into three aliquots of 100 μl each for metabolomic experiments. All aliquots
were stored at −80 °C before metabolite extraction.

Purification of metabolites from blood. Plasma samples were thawed at 4 °C, and
100 µl of plasma was collected into an Eppendorf tube containing 900 µl of ice-cold
methanol/80% water (vol/vol) (pre-cooled at −80 °C) (V plasma: V methanol=
1:9). After being concussed rigorously for 1 min, the mixture was prepared by
centrifugation (17,000g 15 min) in a refrigerated centrifuge. Then, 800 µL of the
metabolite-containing supernatant was transferred to a new Eppendorf tube, and
the protein pellet was collected for protein quantitation. 100 µl of supernatant (i.e.,

metabolites from ~12.5 µl blood) was dried in a SpeedVac at room temperature to
obtain a pellet, which was stored at −80 °C before performing metabolomic pro-
filing analysis.

Analysis of metabolites from blood plasma. For targeted metabolomic analysis,
metabolites in blood plasma were reconstituted in 50 µl of 0.03% formic acid in water
and then analyzed with a SCIEX QTRAP 5500 liquid chromatograph/triple quad-
rupole mass spectrometer. Using a Nexera Ultra-High-Performance Liquid Chro-
matograph system (Shimadzu Corporation), we achieved the separation on a
Phenomenex Synergi Polar-RP HPLC column (150 × 2mm, 4 µm, 80Å). The mass
spectrometer was used with an electrospray ionization (ESI) source in multiple
reaction monitoring (MRM) mode28. We set the flow rate with 0.5ml/min, and the
injection volume with 20 µl. We acquired MRM data with Analyst 1.6.3 software
(SCIEX).

In Supplementary Fig. 2, we performed non-targeted metabolomic analysis of
plasma samples (including 2HG measurement) in a 1290 UHPLC liquid
chromatography (LC) system interfaced to a high-resolution mass spectrometry
(HRMS) 6550 iFunnel Q-TOF mass spectrometer (MS) (Agilent). Both positive
and negative (ESI+ and ESI-) modes were used. Analytes were separated on an
Acquity UPLC® HSS T3 column (1.8 μm, 2.1 × 150 mm, Waters). Mobile phase A
composition was 0.1% formic acid in water and mobile phase B composition was
0.1% formic acid in 100% ACN. ESI source conditions were set as follows: dry gas
temperature 225 °C and flow 18l/min, fragmentor voltage 175 V, sheath gas
temperature 350 °C and flow 12l/ min, nozzle voltage 500 V, and capillary voltage
+3500 V in positive mode and −3500 V in negative. Raw data files were processed
using Profinder B.08.00 SP3 software (Agilent).

Measurement of D-2HG from plasma. In the measurement of Fig. 5d, metabolites
were extracted with 80% methanol–water solution from 25 μl plasma from patients
in a tube. A SpeedVac was used to dry the extract into a pellet. To the pellet was
added U13C-D/L-2HG (internal standard, Cambridge isotope laboratories, 10 nG
in 10 µl acetonitrile), then the mixture was then dissolved in 90 μl freshly mixed
80% acetonitrile/20% acetic acid plus 50 mG/ml diacetyl-L-tartaric anhydride
(DATAN, Acros Organics). The solution thus obtained was sonicated and warmed
up to 75 °C for 30min. Samples were cooled to room temperature and centrifuged.
The supernatant was dried with a SpeedVac, and the pellet was reconstituted into
1.5 mM ammonium formate aqueous solution with 10% acetonitrile (100 µl).
LC/MS analysis was performed on an AB Sciex 5500 QTRAP liquid chromato-
graphy/mass spectrometer (Applied Biosystems SCIEX) equipped with a vacuum
degasser, a quaternary pump, an autosampler, a thermostatted column compart-
ment, and a triple quadrupole/iontrap mass spectrometer with electrospray ioni-
zation interface, and controlled by AB Sciex Analyst 1.6.1 Software. Waters Acquity
UPLC HSS T3 column (150 × 2.1 mM, 1.8 µM) column was used for separation.
Solvents for the mobile phase were 1.5 mM ammonium formate aqueous (pH 3.6
adjusted with formic acid (A), and pure acetonitrile (B). The gradient elution was:
0–12min, linear gradient 1–8% B and 12–15min, 99% B, then the column was
washed with 99% B for 5 min before reconditioning it for 3 min using 1% B. The
flow rate was 0.25 ml/min and the column was operated at 35 °C. Multiple reaction
monitoring (MRM) was used to check 2-hydroxyglutarate-diacetyl tartrate deriva-
tives: 363/147 (CE: −14V); 368/152 (internal standard, CE: −14V).

Data analysis. Integrated chromatogram peaks of each metabolite were analyzed
with MultiQuant software (AB Sciex). The ion intensity was calculated by normalizing
single ion values against the total ion value of the entire chromatogram (i.e., TIC or
Total Ion Chromatogram). The data matrix was input into SIMCA-P software
(Umetrics) by mean-centering and Pareto scaling for subsequent analysis so that the
model fitting would not be biased by concentrations and variations of different
metabolites. Both unsupervised and supervised multivariate data analysis approaches
including PCA, hierarchical clustering, and PLS-DA were performed using Meta-
boanalyst 4.029 and then plotted with Prism 7.0. We performed feature selection in
PLS-DA to identify metabolites that maximize separation between the venous and
arterial groups by rotating the PCA components. The importance of a metabolite in
the model is measured by the VIP score. The VIP score of a metabolite is calculated as
a weighted sum of the squared correlations between this metabolite and the derived
PLS-DA components. Each weight corresponds to the percentage variation of the
response variable, i.e., gA and gV, explained by a PLS-DA component. Intuitively, the
VIP score of a metabolite indicates its intensity of association with the PLS-DA
components that best distinguish the gA and gV groups. By definition, the average of
squared VIP scores equals 1, and by convention a VIP score of greater than 1 is used
as a criterion for variable selection30. Thus, metabolites with a VIP score > 1 were
reported. All data were presented as mean ± sem.

Magnetic resonance imaging of brain tumors in patients. All patients were
imaged in a clinical 3.0 T scanner (Magnetom Verio, Siemens Healthcare, Erlangen,
Germany) equipped with a 12-channel head coil using T1-weighted coronal and
axial imaging and T2-weighted/FLAIR axial imaging. Postcontrast T1-weighted
images were acquired after injection of either gadopentetate dimeglumine (Mag-
nevist, Bayer Schering Pharma AG) or gadobenate dimeglumine (Multihance, BD),
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administered at a dose of 0.1 mmol/kg. The MR imaging protocol was as follows:
T1-weighted images were acquired using an echo time (TE) 2.48 ms, a repetition
time (TR) 300 ms, and voxel size 0.9 × 0.7 × 6 mm. T2-weighted FLAIR images
were acquired using an inversion time of 2500 ms, TR 9000 ms, TE 90 ms, and
voxel size of 0.9 × 0.9 × 6 mm.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the Article file,
Supplementary Information or available from the corresponding author upon reasonable
request. Source data underlying the Figs. 2–5 and Supplementary Fig. 2 are available as a
Source Data file. Source data are provided with this paper.
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